Производство гипотез в естествознании
Страница 4

Математика в древнем мире, да и в дальнейшем, неразрывно была связана с астрономией. В эллинистический период астрономия превратилась в строгую количественную дисциплину, утратив при этом натурфилософский, космологический характер. Гиппарх Родосский (ок. 180-123) впервые использовал для описания сложных неравномерных движений небесных светил метод сложения нескольких равномерных круговых движений, предложенный математиком Апполонием Пергамским. С помощью своей модели он впервые смог составить таблицы для вычисления моментов солнечных и лунных затмений.

Математическое описание астрономических явлений достигло своей вершины в системе александрийского астронома и географа Клавдия Птолемея. В основу геоцентрической теории Птолемея были положены Аристотелевы представления: в центре мира находится неподвижная Земля, вокруг нее вращаются планеты и Солнце.

Биологические представления античности

Раздвижение границ Ойкумены (так греки именовали известную им часть Земли) в эпоху эллинизма способствовало накоплению географических и биологических знаний. Если Аристотель считался отцом зоологии, то его любимый ученик, друг и преемник Теофраст (372-287), описавший около 500 видов растений - отцом ботаники. Галена Пергамский, живший уже в нашу эру (130-200), известен, прежде всего, введением в практику биологического познания физиологического эксперимента на живых подопытных животных (вивисекции).

Период христианства

В последний период античности - эпоху упадка Римской империи - естественнонаучные исследования практически прекращаются. В это время развиваются: алхимия, астрология, магия. Однако этот период не прошел даром, в это время был накоплен богатый экспериментальный материал, который был использован в дальнейшем, при развитии наук, стоящих на позициях рационализма.

Основы научной методологии познания были описаны еще в XIII веке монахом - францисканцем Роджером Бэконом (ок.1214 - 1292), который писал выделил три источника знания:

авторитет;

разум, то есть силлогистическое знание;

опыт.

Начало первой научной революции

Начало первой научной революции обычно отсчитывают от 1543, когда вышла книга Николая Коперника (1473 - 1543) «Об обращениях небесных сфер».

Теория Коперника была не столько первой теорией Нового времени, сколько последней теорией античности. Основное ее значение заключалось в том, что она бросила вызов официально принятой космологии, показав возможность других точек зрения. Она воскресила идеи древних о подвижности Земли и ее ординарности среди других планет.

Создание научного метода

Родоначальниками современной науки считаются английский государственный деятель и философ Френсис Бэкон (1561 - 1626), итальянский физик Галилео Галилей (1564 - 1642) и английский врач Уильям Гарвей (1578 - 1657), которые осознали необходимость органического единства опыта и теории.

Френсис Бэкон, не будучи специалистом, в какой-то конной области естествознания, с 16 лет посвятил себя разработке новой методологии научного познания. В своем главном сочинении «Новый органон» (1620) он провозгласил принципы экспериментально-теоретических исследований природы.

Галилео Галилей реализовал экспериментальный метод на практике, придав ему такие современные черты, как создание идеализированной модели реального процесса, абстрагирование от несущественных факторов, многократное повторение опыта и т.д. Он возродил математический подход Архимеда к исследованию явлений природы, провозгласив, вслед за Леонардо, что великая книга природы написана на языке математики. Он указал, что шар, катящийся по идеально горизонтальной плоскости, будет продолжать свое движение, пока не кончится плоскость (подход к закону инерции). С помощью открытого им свойства тел сохранять свою скорость объяснил, почему на вращающейся Земле груз падает вертикально, ветер не дует все время с востока, птиц не сносит против вращения Земли (это распространенные аргументы сторонников неподвижной Земли).

Уильям Гарвей. Эпоха научной биологии отсчитывается с 1628 года, когда вышла книга Уильяма Гарвея «Исследование о движении сердца и крови у животных». Гален считал, что вены и артерии - это две независимые системы, два «дерева» кровеносных сосудов, по каждой из которых кровь движется, в основном, от сердца и поглощается в органах. Сердце у Галена играло роль смесителя светлой артериальной крови и темной венозной.

После работ Гарвея, Галилея и Бэкона практически сформировалась методология получения научных знаний, в которой теория и эксперимент диалектически неразделимы.

Роль гипотезы в естествознании

Гипотеза - это, в сущности, утверждение о том, как, по нашему мнению, обстоят дела в действительности. Она сообщает о том, что мы ожидаем увидеть в результате правильно организованных наблюдений за событиями, происходящими в реальном мире. Гипотезы представляют собой декларативные предположения, описывающие ожидаемые нами взаимосвязи между явлениями, обозначаемыми нашими понятиями.

Страницы: 1 2 3 4 5

Смотрите также

Значение работ Коперника и Галилея для становления современной науки и естествознания
Введение Современная наука возникла в Европе в период XV - XVI веков. В это время в области экономики идет распад феодальных отношений и развитие зачатков капиталистического производ ...

Наследуются ли приобретенные признаки
Введение Вопрос, который призвана прояснить статья: какие свойства (качества) наследуются организмом, т.е. проявляются всегда ровно так же как и во всех других организмах данной попу ...

Эффекторы
Введение Система водоснабжения - это комплекс инженерных сооружений, предназначенных для забора воды из источника водоснабжения, очистки, хранения и подачи ее потребителю по разводяще ...

 
 




Copyright © 2013 - Все права защищены - www.biotheory.ru